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Abstract. The concepts of the maximum entropy formalism of predictive statistical 
mechanics are applied to transport processes in the steady state. This yields general 
arguments, valid in the nonlinear regime, in favour of Kohler’s principle and the principle 
of minimum entropy production. 

1. Introduction 

In the theory of transport in linear systems there are two well known variational 
principles concerning the entropy production. We shall term the first the principle of 
minimum entropy production (PMEP). It can be shown, as a direct consequence of 
Onsager’s reciprocal relations, that if certain thermodynamic forces are allowed to 
vary, the rate of entropy production in the transport process is at a minimum in the 
steady state, that is, when the currents or flows conjugate to the free forces are all 
zero. This is of importance in justifying ‘Thomson’s hypothesis’, applied originally 
by Lord Kelvin to thermoelectricity and subsequently by a number of authors to other 
transport phenomena (Denbigh 195 1). The second principle was formulated by Kohler 
to aid in the solution of the semiclassical Boltzmann equation for electrons in metals, 
but can be given a more general thermodynamic formulation, as discussed in detail 
by Ziman (1956), and can also be extended to fully quantum-mechanical systems 
(Jones 1982). 

In the following we examine the relationship of these principles to ideas of 
predictive statistical mechanics (PSM) as developed particularly by Jaynes (1957, 1979, 
1980), and in which one proposes to extend ideas developed in equilibrium thermo- 
dynamics to constrained equilibrium and irreversible processes. Specifically, we seek 
to obtain that state, of a given system, which is most likely on the basis of our 
information, and to do so we maximise the information entropy subject to the 
constraints implied by the information. If our information is sufficient to determine 
the actual state, this is also the most likely state. Otherwise PSM gives an average 
over all cases which are possible on the basis of our information. We should remark 
that an information-theory approach to statistical mechanics is sometimes resisted on 
the grounds that our information concerning a system cannot influence its behaviour. 
This is of course true, but our information can influence the nature of our predictions 
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of its behaviour and one convenient way of characterising a system is in terms of what 
information is required to make these predictions correct, a point we shall return to. 

Apart from the interest of connecting the entropy-production theorem with PSM, 
our considerations involving the latter will not depend on the system being linear and 
we shall therefore be able to consider what variational principles are possible, on the 
basis of PSM, in the nonlinear regime. As we shall see, we are also led to an interesting 
interpretation of the failure of Kohler’s principle and the PMEP for non-zero magnetic 
fields. 

2. Variational principle for the most probable state 

We define the extrinsic entropy production ue as the rate of entropy production in 
terms of the thermodynamic forces X ,  and the corresponding fluxes J,, that is, by the 
usual macroscopic expression me = Z, X ,  J,. The intrinsic entropy production a, is 
defined as the rate of entropy production expressed in  terms of parameters 8 describing 
the internal state of the system. Thus 8 might be a set of microscopic parameters, 
such as elements of the density matrix, or it might represent the currents in the system. 

Suppose now our information is that definite constant thermodynamic forces X ,  
are applied to a system with entropy production a,(@). From some arbitrary initial 
state Eo the system would evolve towards the true steady state, attaining it (for all 
intents and purposes) in  some finite time T. Consider then a possible evolutionary 
path P starting from Zo and over which the parameters 8 change during the time T, 
after which they remain constant at a set of values 8’ describing a possible steady 
state, For any possible steady state the intrinsic and extrinsic entropy production 
must be equal, so that we require ai(8’) = Z, X,J& where J h  = J,  (e’), which ensures 
that the set 8’ is consistent with our information. In accordance with the philosophy 
of PSM we now say that the most probable state (on the basis of the information 
available) after a time 7 is that which maximises the final entropy, and hence the 
entropy production over the path P. The entropy is a measure of the final number 
of a priori equally probable microstates, and the macroscopic change we predict is 
therefore that giving the maximum number of these microstates consistent with the 
information. The microstates, though equally probable a priori, may not be equally 
probable in the circumstances under discussion, but to allocate other probabilities 
would show a bias which is not warranted by the information available. 

If we take t to be very large ( t  >>T) we may neglect the entropy production while 
0 is changing and take the final entropy change to be just ai(8‘) t .  Our conclusion is 
evidently that the most probable set of parameters 8 is that maximising the intrinsic 
entropy production. On the basis of predictive statistical mechanics, therefore, we 
may state the general principle: of all possible steady states satisfying ai =ae for given 
X the most probable steady state on the basis of our information is that for which me is 
a maximum. 

The information referred to here consists of the X ,  specifying the external condi- 
tions, and the form of ai(@), specifying the system. If this information is complete, 
by which we mean it is sufficient to determine the steady state, we simply have: of 
all possible steady states satisfying ai = ue for given X the actual steady state is that for 
which ue is a maximum. 

This is just the general statement of Kohler’s principle in thermodynamic terms 
(Ziman 1956, Jones 1982). 
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Introducing a Lagrange parameter A 1, we can see that Kohler’s principle implies, 
for any member 8, of the set 8, 

(1 - A  l)ac+i/aea = -A I aae/aea (2.1) 

and 
(i-Al)a2a,/ae: s - ~ ~ a  2 ae/aea.  2 

In a recent discussion of Kohler’s principle we emphasised the alternative formulation: 
of all possible states specified by variables 8’ such that u,(8’) = aJ8) for given X ,  the 
steady state (8’ = 8) is that which makes ai(@‘) a minimum. Introducing a Lagrangian 
parameter A 2 ,  one sees that this implies 

agi/aeu = A 2  aaela8, 
and 

a2ai/ae2 3 A 2  a2ue/aeU. 2 

These equations are consistent with (2.1) and (2.2) provided a2ue/a8t = 0 and A I  > 0. 
This will be true if we can choose the J, to be linear functions of the e,, and ai(@) 
is a homogeneous function of order n 2 1. 

3. Minimum entropy production 

We now consider a particular application of Kohler’s principle as given above. Let 
us examine the condition under which the system in a steady state with currents Ja 
and thermodynamic forces X can provide a trial function ai(@) for the same system 
when the thermodynamic forces are X ’ .  To apply the principle we require the intrinsic 
entropy production for the first state, and since in a steady state this is automatically 
equal to the extrinsic entropy production, we have 

We also require the extrinsic entropy production the trial state gives with the actual 
forces X ’ .  This is simply 

(3.2) 

Setting ui =U, we see that the first steady state gives a trial state for the second steady 
state provided 

JaXu = 1 JuXh 
U U 

and if this is satisfied then uisue(e’) ,  i.e. 

(3.3) 

(3.4) 

Equation (3.3) is of course just ZJaSXu =0,  and if we require this to be true for 
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arbitrary small variations of SX, in those forces which vary from state to state we 
must set 

J ,  = 0. (3.5) 

Equation (3.4) now shows that in the steady state the entropy production is at a 
minimum with respect to arbitrary variations of the free thermodynamic forces (i.e. 
those conjugate to the currents which are zero). 

We note that (3.3) and (3.4) yield 

or, if only X ,  varies, 

This implies 

1 (aJalaX,)xa = 0 
a 

and 

aJ,/ ax, a 0. 

For linear systems we may write 

Ja = 
P 

in which case 

aJa /ax ,  = L,, 

L,, 2 0. 

so that (3.9) yields 

Equations (3.5) and (3.8) respectively imply 

c L,&P = 0 
P 

and 

c L P J P  = 0. 
P 

Let only X a  and X ,  be non-zero. These equations are then 

LyaXa + LyJy = 0 LaJa + L7J-y = 0 
i.e. 

La, = Lya 

the Onsager relations. 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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From the above we can see that the PMEP is a formal consequence of Kohler’s 
principle in the nonlinear regime as well as for linear systems. 

4. Magnetic fields 

For a linear system in the presence of a magnetic field H, the intrinsic entropy 
production is a function of parameters 6 which describe both the system Z and a 
second system Z- the same as the first except that H is reversed (Jones 1982). These 
parameters do not completely specify the sets of currents J and J -  but only the 
combination = J + J - .  In that case the 6’ consistent with our information are all 
those values for which ai(@’) = a; (6 ’ )  = +(ae(@) +a, (6 ‘ ) )  = Z JaX, and on the basis of 
PSM one therefore expects the true values of 8 to be given by maximising ai(@’) subject 
to ~ ~ ( 6 ‘ )  = Z T s a .  This is indeed the correct generalisation of Kohler’s principle (Jones 
1982), and moreover one finds that the original PMEP is replaced by one for which 
the entropy production is at a minimum with respect to variations of X, when 
J,’ + J ,  = 0 (not when either Z or Z- is in its steady state). 

5. Discussion 

We have seen that Kohler’s principle ahd the principle of minimum entropy production 
follow from the assumptions of predictive statistical mechanics. The argument is of 
importance in being applicable to nonlinear systems but, as emphasised in 9: 2, strictly 
speaking leads to a variational principle for the ‘most probable steady-state’, not 
necessarily the actual state of the system. This ‘most probable state’ is the most 
unbiased prediction on the basis of our information. We should stress that there is a 
sense in which we are applying no general principles other than those used in 
equilibrium statistical mechanics. Given certain macroscopic variables and an 
expression S for the entropy, one may predict the most probable state on the basis of 
the information provided. One may now argue that if the state predicted were not 
the actual state this would be evidence for the existence of microscopic laws not at 
present known (Jaynes 1957). Similarly, one may argue that if a system subject to 
thermodynamic forces X does not reach the most probable state then there must be 
other unknown constraints C on the system. Certainly, if the entropy is at a maximum 
at equilibrium the C are inoperative at X = 0 and we can further see that the C are 
inoperative in linear systems, since Kohler’s principle can be proved independently 
in this case. From this point of view the testing of Kohler’s principle or the PMEP for 
nonlinear systems would be of fundamental importance in establishing the existence 
or otherwise of C. 

In this connection any counterexample to the PMEP or Kohler’s principle must of 
course be one to which predictive statistical mechanics is relevant. For example, the 
PMEP is sometimes illustrated by means of a system of parallel resistors (see e.g. 
Ziman 1956) and the principle breaks down if the resistors are non-ohmic (nonlinear). 
However, from the present point of view the satisfaction, or otherwise, of the PMEP 
is simply an accident, for the parallel circuit elements are completely independent for 
a given voltage-the current in one element is the same irrespective of the presence 
of any other. The whole point of principles of maximum entropy production is the 
possibility of discussing complexly interacting systems. 
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